1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346 |
s[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]])
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e₁₂₆₉₆, acc₁₂₇₀₀]], "unDual"], "appEndo"]]) = (fn(acc₁₂₇₀₀ : type) -{...e₁₂₆₉₆}> acc₁₂₇₀₀ : type)
00:00:42 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/prelude/classes/foldable.syl:31.2-46
00:00:42 ocaml5.1.1-sylvan_stage0> + has arguments applied that would require it to have a different type
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + --> ./std/prelude/classes/foldable.syl:31.2-46
00:00:42 ocaml5.1.1-sylvan_stage0> + │
00:00:42 ocaml5.1.1-sylvan_stage0> + 31 │ foldMap(toDualEndo, xs).unDual.appEndo(init)
00:00:42 ocaml5.1.1-sylvan_stage0> + │ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00:00:42 ocaml5.1.1-sylvan_stage0> + Raised by primitive operation at Stdlib__Sys.getenv_opt in file "sys.ml.in", line 60, characters 11-21
00:00:42 ocaml5.1.1-sylvan_stage0> + error[E0018]: could not solve for:
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + elem₂₆₂₅ : type
00:00:42 ocaml5.1.1-sylvan_stage0> + ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
00:00:42 ocaml5.1.1-sylvan_stage0> + ?₃₆₄₃₄₉ : (fn() -{LocalMutable[?₃₆₃₉₉₃]}> Array[elem₂₆₂₅] : type) = (fn[scope₁₁₉₇₁: MutableScope]() -{LocalMutable[scope₁₁₉₇₁]}> Array[elem₂₆₂₅] : type)
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + this constraint exists because:
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (fn[scope₁₁₉₇₁: MutableScope]() -{LocalMutable[scope₁₁₉₇₁]}> Array[elem₂₆₂₅] : type) = (fn() -{LocalMutable[?₃₆₃₉₉₃]}> Array[elem₂₆₂₅] : type)
00:00:42 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (fn(fn[scope₁₁₉₇₁: MutableScope]() -{LocalMutable[scope₁₁₉₇₁]}> Array[elem₂₆₂₅] : type) -> Array[elem₂₆₂₅] : type) = (fn(fn() -{LocalMutable[?₃₆₃₉₉₃]}> Array[elem₂₆₂₅] : type) -> Array[elem₂₆₂₅] : type)
00:00:42 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/data/array.syl:34.8-39.10 has arguments
00:00:42 ocaml5.1.1-sylvan_stage0> + applied that would require it to have a different type
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + --> ./std/data/array.syl:34.8-39.10
00:00:42 ocaml5.1.1-sylvan_stage0> + │
00:00:42 ocaml5.1.1-sylvan_stage0> + 34 │ withLocalMutable(fn[scope]() => {
00:00:42 ocaml5.1.1-sylvan_stage0> + │ ╭─^
00:00:42 ocaml5.1.1-sylvan_stage0> + 35 │ │ def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:00:42 ocaml5.1.1-sylvan_stage0> + 36 │ │ copyArrayToMutableArray(out, 0, lhs, 0, lhsLength);
00:00:42 ocaml5.1.1-sylvan_stage0> + 37 │ │ copyArrayToMutableArray(out, lhsLength, rhs, 0, rhsLength);
00:00:42 ocaml5.1.1-sylvan_stage0> + 38 │ │ freezeMutableArray(out)
00:00:42 ocaml5.1.1-sylvan_stage0> + 39 │ │ })
00:00:42 ocaml5.1.1-sylvan_stage0> + │ ╰──^
00:00:42 ocaml5.1.1-sylvan_stage0> + Raised at Sylvan_stage0__Tyck_common.try_unify_ty_in_ht in file "lib/tyck_common.ml", line 1864, characters 6-147
00:00:42 ocaml5.1.1-sylvan_stage0> + Called from Sylvan_stage0__Tyck_common.try_unify_ty_in_ht in file "lib/tyck_common.ml", line 1756, characters 8-166
00:00:42 ocaml5.1.1-sylvan_stage0> + Called from Sylvan_stage0__Tyck_common.Type.try_unify in file "lib/tyck_common.ml", line 4540, characters 6-78
00:00:42 ocaml5.1.1-sylvan_stage0> + error[E0019]: could not solve for type:
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + elem₂₆₂₅ : type
00:00:42 ocaml5.1.1-sylvan_stage0> + scope₂₇₁₁ : type
00:00:42 ocaml5.1.1-sylvan_stage0> + ────────────────────────
00:00:42 ocaml5.1.1-sylvan_stage0> + ?₃₆₃₉₉₃ : MutableScope
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + --> ./std/data/array.syl:35.21-36
00:00:42 ocaml5.1.1-sylvan_stage0> + │
00:00:42 ocaml5.1.1-sylvan_stage0> + 35 │ def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:00:42 ocaml5.1.1-sylvan_stage0> + │ ^~~~~~~~~~~~~~~
00:00:42 ocaml5.1.1-sylvan_stage0> + Raised at Sylvan_stage0__Tyck_common.try_unify_ty_in_ht in file "lib/tyck_common.ml", line 1864, characters 6-147
00:00:42 ocaml5.1.1-sylvan_stage0> + Called from Sylvan_stage0__Tyck_common.try_unify_ty_in_ht in file "lib/tyck_common.ml", line 1756, characters 8-166
00:00:42 ocaml5.1.1-sylvan_stage0> + Called from Sylvan_stage0__Tyck_common.Type.try_unify in file "lib/tyck_common.ml", line 4540, characters 6-78
00:00:42 ocaml5.1.1-sylvan_stage0> + error[E0019]: could not solve for type:
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + elem₂₆₂₅ : type
00:00:42 ocaml5.1.1-sylvan_stage0> + ─────────────────
00:00:42 ocaml5.1.1-sylvan_stage0> + ?₃₆₄₂₈₄ : type
00:00:42 ocaml5.1.1-sylvan_stage0> +
00:00:42 ocaml5.1.1-sylvan_stage0> + --> ./std/data/array.syl:34.25-39.9
00:00:42 ocaml5.1.1-sylvan_stage0> + │
00:00:42 ocaml5.1.1-sylvan_stage0> + 34 │ withLocalMutable(fn[scope]() => {
00:00:42 ocaml5.1.1-sylvan_stage0> + │ ╭──────────────────^
00:00:42 ocaml5.1.1-sylvan_stage0> + 35 │ │ def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:00:42 ocaml5.1.1-sylvan_stage0> + 36 │ │ copyArrayToMutableArray(out, 0, lhs, 0, lhsLength);
00:00:42 ocaml5.1.1-sylvan_stage0> + 37 │ │ copyArrayToMutableArray(out, lhsLength, rhs, 0, rhsLength);
00:00:42 ocaml5.1.1-sylvan_stage0> + 38 │ │ freezeMutableArray(out)
00:00:42 ocaml5.1.1-sylvan_stage0> + 39 │ │ })
00:00:42 ocaml5.1.1-sylvan_stage0> + │ ╰─^
00:00:42 ocaml5.1.1-sylvan_stage0> + Raised at Sylvan_stage0__Tyck_common.try_unify_ty_in_ht in file "lib/tyck_common.ml", line 1864, characters 6-147
00:00:42 ocaml5.1.1-sylvan_stage0> + Called from Sylvan_stage0__Tyck_common.try_unify_ty_in_ht in file "lib/tyck_common.ml", line 1756, characters 8-166
00:00:42 ocaml5.1.1-sylvan_stage0> + Called from Sylvan_stage0__Tyck_common.Type.try_unify in file "lib/tyck_common.ml", line 4540, characters 6-78
00:00:42 ocaml5.1.1-sylvan_stage0> + Encountered 76 errors and 1 warning.
00:00:42 ocaml5.1.1-sylvan_stage0> + [1]
00:01:41 ocaml5.1.1-sylvan_stage0> File "tests/all_errors.t/run.t", line 1, characters 0-0:
00:01:41 ocaml5.1.1-sylvan_stage0> --- tests/all_errors.t/run.t 2025-02-14 02:00:21.019385837 +0000
00:01:41 ocaml5.1.1-sylvan_stage0> +++ tests/all_errors.t/run.t.corrected 2025-02-14 02:00:21.405381371 +0000
00:01:41 ocaml5.1.1-sylvan_stage0> @@ -18,387 +18,424474 @@
00:01:41 ocaml5.1.1-sylvan_stage0> Lexer and parser errors.
00:01:41 ocaml5.1.1-sylvan_stage0> $ compile err_0001
00:01:41 ocaml5.1.1-sylvan_stage0> - error[E0001]: unexpected character '`'
00:01:41 ocaml5.1.1-sylvan_stage0> - --> ./err_0001.syl:1.0
00:01:41 ocaml5.1.1-sylvan_stage0> - |
00:01:41 ocaml5.1.1-sylvan_stage0> - 1 | `
00:01:41 ocaml5.1.1-sylvan_stage0> - | ^
00:01:41 ocaml5.1.1-sylvan_stage0> - Encountered 1 error.
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0018]: could not solve for:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + e{_} : Effects
00:01:41 ocaml5.1.1-sylvan_stage0> + a{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + acc{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + where$0{_} : ::std::prelude::classes::foldable::Foldable[a{_}]
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (fn(acc{_} : type) -{...e{_}}> acc{_} : type)
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + this constraint exists because:
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (fn(acc{_} : type) -{...e{_}}> acc{_} : type)
00:01:41 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + has arguments applied that would require it to have a different type
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 31 | foldMap(toDualEndo, xs).unDual.appEndo(init)
00:01:41 ocaml5.1.1-sylvan_stage0> + | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0018]: could not solve for:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + e{_} : Effects
00:01:41 ocaml5.1.1-sylvan_stage0> + a{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + acc{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + where$0{_} : ::std::prelude::classes::foldable::Foldable[a{_}]
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::algebra::endomorphism::Endo[e{_}, acc{_}] : type)
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + this constraint exists because:
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::algebra::endomorphism::Endo[e{_}, acc{_}] : type) = ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (fn(acc{_} : type) -{...e{_}}> acc{_} : type)
00:01:41 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + has arguments applied that would require it to have a different type
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 31 | foldMap(toDualEndo, xs).unDual.appEndo(init)
00:01:41 ocaml5.1.1-sylvan_stage0> + | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0018]: could not solve for:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + e{_} : Effects
00:01:41 ocaml5.1.1-sylvan_stage0> + a{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + acc{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + where$0{_} : ::std::prelude::classes::foldable::Foldable[a{_}]
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + this constraint exists because:
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (fn(acc{_} : type) -{...e{_}}> acc{_} : type)
00:01:41 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + has arguments applied that would require it to have a different type
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 31 | foldMap(toDualEndo, xs).unDual.appEndo(init)
00:01:41 ocaml5.1.1-sylvan_stage0> + | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0018]: could not solve for:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + e{_} : Effects
00:01:41 ocaml5.1.1-sylvan_stage0> + a{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + acc{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + where$0{_} : ::std::prelude::classes::foldable::Foldable[a{_}]
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + this constraint exists because:
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (fn(acc{_} : type) -{...e{_}}> acc{_} : type)
00:01:41 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + has arguments applied that would require it to have a different type
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 31 | foldMap(toDualEndo, xs).unDual.appEndo(init)
00:01:41 ocaml5.1.1-sylvan_stage0> + | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0018]: could not solve for:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + e{_} : Effects
00:01:41 ocaml5.1.1-sylvan_stage0> + a{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + acc{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + where$0{_} : ::std::prelude::classes::foldable::Foldable[a{_}]
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten0{_} : (::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : RuntimeRepr) = (RuntimeReprBoxed : RuntimeRepr)
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + flatten1{_} : ((::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]) : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"] : Type[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + this constraint exists because:
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> ...TRUNCATED BY DUNE...
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (::std::intrinsics::FieldType[RuntimeReprBoxed, (::std::algebra::endomorphism::Endo[e{_}, acc{_}] |> EqCongApp[EqRefl[Type], EqSym[EqTrans[AxiomNewtypeFieldRepr[./std/algebra/dual_monoid.syl:8.12-16, [::std::algebra::endomorphism::Endo[e{_}, acc{_}]]], EqRefl[RuntimeReprBoxed]]]]), "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]])
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (::std::intrinsics::FieldType[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"] : Type[::std::intrinsics::FieldRepr[::std::intrinsics::FieldRepr[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], ::std::intrinsics::FieldType[RuntimeReprBoxed, ::std::algebra::dual_monoid::Dual[::std::algebra::endomorphism::Endo[e{_}, acc{_}]], "unDual"], "appEndo"]]) = (fn(acc{_} : type) -{...e{_}}> acc{_} : type)
00:01:41 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + has arguments applied that would require it to have a different type
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/prelude/classes/foldable.syl:31.2-46
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 31 | foldMap(toDualEndo, xs).unDual.appEndo(init)
00:01:41 ocaml5.1.1-sylvan_stage0> + | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0018]: could not solve for:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + elem{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : (fn() -{LocalMutable[?{_}]}> Array[elem{_}] : type) = (fn[scope{_}: MutableScope]() -{LocalMutable[scope{_}]}> Array[elem{_}] : type)
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + this constraint exists because:
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (fn[scope{_}: MutableScope]() -{LocalMutable[scope{_}]}> Array[elem{_}] : type) = (fn() -{LocalMutable[?{_}]}> Array[elem{_}] : type)
00:01:41 ocaml5.1.1-sylvan_stage0> + - it is used to solve for (fn(fn[scope{_}: MutableScope]() -{LocalMutable[scope{_}]}> Array[elem{_}] : type) -> Array[elem{_}] : type) = (fn(fn() -{LocalMutable[?{_}]}> Array[elem{_}] : type) -> Array[elem{_}] : type)
00:01:41 ocaml5.1.1-sylvan_stage0> + - the type of the expression at ./std/data/array.syl:34.8-39.10 has arguments
00:01:41 ocaml5.1.1-sylvan_stage0> + applied that would require it to have a different type
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/data/array.syl:34.8-39.10
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 34 | withLocalMutable(fn[scope]() => {
00:01:41 ocaml5.1.1-sylvan_stage0> + | /-^
00:01:41 ocaml5.1.1-sylvan_stage0> + 35 | | def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:01:41 ocaml5.1.1-sylvan_stage0> + 36 | | copyArrayToMutableArray(out, 0, lhs, 0, lhsLength);
00:01:41 ocaml5.1.1-sylvan_stage0> + 37 | | copyArrayToMutableArray(out, lhsLength, rhs, 0, rhsLength);
00:01:41 ocaml5.1.1-sylvan_stage0> + 38 | | freezeMutableArray(out)
00:01:41 ocaml5.1.1-sylvan_stage0> + 39 | | })
00:01:41 ocaml5.1.1-sylvan_stage0> + | \--^
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0019]: could not solve for type:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + elem{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + scope{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : MutableScope
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/data/array.syl:35.21-36
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 35 | def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:01:41 ocaml5.1.1-sylvan_stage0> + | ^~~~~~~~~~~~~~~
00:01:41 ocaml5.1.1-sylvan_stage0> + error[E0019]: could not solve for type:
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + elem{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> + ----------------------------------------
00:01:41 ocaml5.1.1-sylvan_stage0> + ?{_} : type
00:01:41 ocaml5.1.1-sylvan_stage0> +
00:01:41 ocaml5.1.1-sylvan_stage0> + --> ./std/data/array.syl:34.25-39.9
00:01:41 ocaml5.1.1-sylvan_stage0> + |
00:01:41 ocaml5.1.1-sylvan_stage0> + 34 | withLocalMutable(fn[scope]() => {
00:01:41 ocaml5.1.1-sylvan_stage0> + | /------------------^
00:01:41 ocaml5.1.1-sylvan_stage0> + 35 | | def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:01:41 ocaml5.1.1-sylvan_stage0> + 36 | | copyArrayToMutableArray(out, 0, lhs, 0, lhsLength);
00:01:41 ocaml5.1.1-sylvan_stage0> + 37 | | copyArrayToMutableArray(out, lhsLength, rhs, 0, rhsLength);
00:01:41 ocaml5.1.1-sylvan_stage0> + 38 | | freezeMutableArray(out)
00:01:41 ocaml5.1.1-sylvan_stage0> + 39 | | })
00:01:41 ocaml5.1.1-sylvan_stage0> + | \-^
00:01:41 ocaml5.1.1-sylvan_stage0> + Encountered 76 errors.
00:01:41 ocaml5.1.1-sylvan_stage0> vim: set ft=cram :
00:01:41 error: builder for '/nix/store/8gzq5bj1q1j233kdn7hhpjv7ma334nrv-ocaml5.1.1-sylvan_stage0-0.0.1-pre.drv' failed with exit code 1;
00:01:41 last 25 log lines:
00:01:41 > +
00:01:41 > + --> ./std/data/array.syl:35.21-36
00:01:41 > + |
00:01:41 > + 35 | def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:01:41 > + | ^~~~~~~~~~~~~~~
00:01:41 > + error[E0019]: could not solve for type:
00:01:41 > +
00:01:41 > + elem{_} : type
00:01:41 > + ----------------------------------------
00:01:41 > + ?{_} : type
00:01:41 > +
00:01:41 > + --> ./std/data/array.syl:34.25-39.9
00:01:41 > + |
00:01:41 > + 34 | withLocalMutable(fn[scope]() => {
00:01:41 > + | /------------------^
00:01:41 > + 35 | | def out := newMutableArray(readArray(lhs, 0), lhsLength + rhsLength);
00:01:41 > + 36 | | copyArrayToMutableArray(out, 0, lhs, 0, lhsLength);
00:01:41 > + 37 | | copyArrayToMutableArray(out, lhsLength, rhs, 0, rhsLength);
00:01:41 > + 38 | | freezeMutableArray(out)
00:01:41 > + 39 | | })
00:01:41 > + | \-^
00:01:41 > + Encountered 76 errors.
00:01:41 >
00:01:41 > vim: set ft=cram :
00:01:41 >
00:01:41 For full logs, run 'nix-store -l /nix/store/8gzq5bj1q1j233kdn7hhpjv7ma334nrv-ocaml5.1.1-sylvan_stage0-0.0.1-pre.drv'.
real 1m41.398s
user 0m1.182s
sys 0m0.640s
|